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Figure 1: (a) IMUCoCo enables pose estimation from atypical locations like the upper arm, upper chest, and ankle. (b) IMUCoCo 
allows users to put their IMU sensing devices in different pockets of their clothing for convenience. (c) With IMUCoCo, users 
can move the sensors to appropriate locations according to different application requirements (e.g., IMUs in the thigh pockets 
to track leg movements during soccer). 

Abstract 
IMUs are regularly used to sense human motion, recognize activ-
ities, and estimate full-body pose. Users are typically required to 
place sensors in predefined locations that are often dictated by 
common wearable form factors and the machine learning model’s 
training process. Consequently, despite the increasing number of 
everyday devices equipped with IMUs, the limited adaptability 
has significantly constrained the user experience to only using a 
few well-explored device placements (e.g., wrist and ears). In this
paper, we rethink IMU-based motion sensing by acknowledging 
that signals can be captured from any point on the human body. 
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We introduce IMU over Continuous Coordinates (IMUCoCo), a
novel framework that maps signals from a variable number of IMUs 
placed on the body surface into a unified feature space based on 
their spatial coordinates. These features can be plugged into down-
stream models for pose estimation and activity recognition. Our 
evaluations demonstrate that IMUCoCo supports accurate pose 
estimation in a wide range of typical and atypical sensor place-
ments. Overall, IMUCoCo supports significantly more flexible use 
of IMUs for motion sensing than the state-of-the-art, allowing users 
to place their sensors-laden devices according to their needs and 
preferences. The framework also supports the ability to change 
device locations depending on the context and suggests placement 
depending on the use case. 
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1 Introduction 
The ubiquity offered by IMUs has made them an attractive sen-
sor for sensing human motion and pose [2, 18]. Consumer IMUs 
are used for many applications, such as gait analysis using foot-
mounted devices [49], fall risk estimation using a smartphone [16], 
hyperactivity monitoring using smartwatches [3], and human pose 
estimation using different consumer devices [46, 48]. 

However, the inherent assumption in these approaches is that 
each IMU, while part of a consumer device, is still a specialized 
device, worn at specific locations. Under this assumption, machine 
learning models have to be trained for specific devices and place-
ments, which limits their practicality. For example, IMUPoser [28] 
inferred 3D body pose using a few common device placements, 
such as pants pocket, ear, and wrist. The authors built a model that 
adapted to varying availability of devices and worked on consumer 
products. However, a user might want to move the same device to 
different locations over the course of a day. Current models fail to 
adapt when users choose to carry their phone in a jacket pocket, 
wear it on an armband while exercising, or mount it on their back 
as a posture tracker while seated. For each new location, the ML 
models need to be retrained, and that severely limits the flexibility 
of any ML model aimed at ubiquitous human motion sensing. 

To bridge this gap, we need to reconsider the potential source 
of IMU signals for training the models and not remain limited to a 
set of key locations, but to any point on the human body’s surface. 
Figure 2 shows the full-body acceleration of a golf swing captured 
by a camera-based motion capture system. Each arrow in the figure 
represents the acceleration vector synthesized at that point. It also 
plots the temporal changes in synthesized acceleration for 6 key 
points on the user’s arm. Signals from devices placed on regions that 
move together appear to be kinematically related, with some cases 
observed in previous studies [14, 43]. Although sometimes certain 
parts of the body can move entirely independently, in many other 
situations, these correlations suggest the existence of an underlying 
mechanism that connects such signals. Inspired by this observation, 
the question arises: Can we create a unified model that can 
take the IMU data captured from any point on the human 
body surface for human motion sensing? 

To achieve this vision, there are several technical challenges that 
need to be addressed. First, no existing machine learning architec-
ture for IMU data is designed to process input from all possible 
points on the human body surface. Existing approaches rely on 
creating separate feature encoders for each location (e.g., [17]) or 
training together with multiple inputs (e.g., [28]). Thus, learning a 
model for a large number of inputs remains unscalable, especially 
when the number of possible input locations is infinite. Second, 

there is no existing dataset that includes data from nearly infinite 
possible IMU locations. To our knowledge, the most comprehensive 
IMU-based dataset yet uses 17 real IMUs [15], which is still far 
from our goal. Third, a training framework to learn the relationship 
between the large number of IMU signals on the body surface and 
the underlying human motion has not yet been built. 

In this paper, we present IMUCoCo, a novel approach enabling 
IMU placement over “Continuous Coordinates” that maps IMU 
signals obtained from different locations on the body into a uni-
fied feature space defined by the spatial coordinates of the sensor. 
IMUCoCo models the kinematic relationship between body loca-
tions using a self-supervised learning strategy trained on exten-
sive synthetic IMU signals generated from existing motion capture 
datasets [11, 13, 15, 24, 26, 29, 31]. To address the scalability chal-
lenge, IMUCoCo learns to align IMU signals placed flexibly on the 
body’s surface with a constant number of human joint movements. 
The unified mechanism for modeling body motion is driven by the 
insight that signals across the body surface are influenced by the 
shared kinematic structure connected by the joints of the human 
body, thus leading to a model of the body motion regardless of the 
number of input signals and does not need to be retrained when 
placements change. 

To demonstrate the performance of our system, we conducted a 
series of evaluations. In Evaluation #1, we collected a custom dataset 
for IMU data at atypical locations on a user’s body and ground truth 
recorded using camera-based motion capture. We demonstrated that 
our approach generalizes well to all atypical locations that are not 
covered by prior approaches. In Evaluation #2, we showed that for 
typical locations, our approach achieves competitive performance 
compared to the existing work [46, 51–53]. Finally, we demonstrate 
IMUCoCo’s utility in supporting different usage scenarios ranging 
from allowing users to use atypical device placements, the ability to 
change device locations depending on the context, and suggesting 
placement based on the use case. Thus, IMUCoCo provides a human 
motion sensing model that allows users to wear their devices as they 
need or prefer. It also supports users in tracking their bodies for 
specific applications by allowing them to move devices as needed. 

2 Related Work 
Our research builds on existing studies that utilize on-body IMUs for 
human motion sensing. In this section, we provide a brief overview 
of these efforts. We also surveyed recent advances in other on-body 
sensors that might augment IMUs for motion sensing in the future. 

2.1 Body Pose Tracking from IMUs 
Inside-out full-body pose tracking from sparse sensor sets has 
been intensively studied using different sensing modalities, such 
as vision [2, 18, 37], RFID [19], pressure [10], acoustic [25], and 
electromagnetic-field [5, 45]. Among these, IMU-based solutions 
are often more deployable, as they are present on many consumer 
devices. These solutions learn the mapping between the IMU signals 
from designated locations on the body to the body pose parameters, 
which is often represented as the SMPL model [23]. For instance, 
Sparse Inertial Poser [42] and Deep Inertial Poser [15] are pose 
tracking systems with 6-17 on-body IMUs. Several other works 
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Figure 2: Synthesized acceleration signals across the body surface from a person swinging a golf club from T=0.0s to T=1.5s. The 
direction and magnitude of acceleration are visualized as arrows (Left Figure). The acceleration selected from 6 “devices” on 
the right arm from hand to shoulder is plotted (Right Figure), corresponding to the six devices on the avatar’s right arm. The 
magnitude and timing of the peak in the acceleration signal at each location are different. IMUCoCo models such differences 
and supports placement and movement of the IMU to different points on the body to give the user flexibility. 

have been proposed to improve the accuracy of these pose track-
ing systems [51–53, 57]. Researchers have also explored ways for 
more practical device placements; for example, IMUPoser [28] and 
MobilePoser [48] support different combinations of commercial 
devices, including earbuds, phones, and watches. 

Although current systems achieve high accuracy in pose esti-
mation, they rely on placing IMUs on predefined body parts. This 
rigidity restricts adaptability, particularly when encountering place-
ments not represented in the training data. For example, what if a 
user prefers to wear an anklet instead of a watch? While recent ap-
proaches such as DiffusionPoser [46] attempt to generalize by using 
diffusion models to infer missing sensor data, they are still con-
fined to 13 predetermined sensor locations. Consequently, sensor 
placements outside these predefined points remain unsupported. 
Additionally, the computationally intensive multi-step diffusion 
process significantly hampers real-time deployment on resource-
limited devices. Crucially, existing research overlooks opportunities 
to explore the vast and continuous space of the human body for 
sensor placement, potentially missing configurations that could 

yield superior accuracy and usability. In this paper, we explore this 
opportunity and demonstrate its benefits. 

2.2 Physical Activity Recognition from IMUs 
Body motion data can also enable human activity recognition [4, 6] 
and exercise tracking [40, 47]. Several datasets have been developed 
that collect sensor data from diverse devices such as smartphones 
and smartwatches during various daily physical activities, including 
walking and climbing stairs [8, 21, 35]. Using these datasets, numer-
ous machine learning-based approaches have emerged [7, 34, 56]. 
For example, Müller et al. [30] developed a method specifically for 
exercise tracking using IMUs placed on the wrists and ankles. Ad-
ditionally, Kwon et al. [22] introduced a technique for synthesizing 
IMU data from videos, allowing more flexible activity recognition. 

However, these methods continue to follow the fixed-placement 
approach previously discussed in body pose tracking research, re-
lying on a predetermined set of IMU locations. To overcome this 
limitation, some studies have investigated location-invariant meth-
ods. Rey et al. [36] proposed a method to transfer sensor data across 
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Figure 3: Overview of the IMUCoCo system during test time. IMU data is mapped into a placement-adaptive representation, 
which can be easily tuned for downstream tasks, such as pose estimation and activity recognition. Modules and synthetic IMUs 
that are only used during training time are omitted from the figure for brevity of presentation. 

typical placements (e.g., from wrist to ankle). SenseHAR [17] com-
bined multiple sensor types from wearables and phones into a 
shared latent feature space, enabling downstream activity recogni-
tion models to train on unified features. Adaimi et al. [1] developed 
a location-invariant model using a large-scale dataset suitable for 
diverse activities such as driving. Still, these location-invariant ap-
proaches are limited to the sensor placements explicitly captured in 
their datasets. In contrast, we demonstrate that IMUCoCo can seam-
lessly integrate into activity recognition pipelines, accommodating 
a continuous range of sensor placements beyond those predefined 
locations. 

2.3 Advancements in On-Body Devices 
Existing on-body sensing research predominantly utilizes com-
mon wearable locations, such as glasses, wrists, and thigh pockets. 
Beyond these typical placements, researchers have also explored 
other locations and form factors, such as embedding sensors within 
everyday accessories [12], magnetic sensing through rings [32], 
multimodal eating detection via necklaces [55], and touch input 
through belts [9]. Recent advances in fabrication technologies and 
robotics have further expanded feasible sensor placements across 
continuous body surfaces. For instance, Yu et al. [54] introduced a 
scarf-shaped device integrated with electrical impedance tomogra-
phy for activity recognition. Similarly, SkinMarks [44] used stretch-
able electronic tattoos strategically placed on epidermal landmarks, 
transforming natural skin features and limb movements into in-
teractive touch inputs. We anticipate that these innovations will 
facilitate the integration of IMU sensors to capture complete body 

motion data in the future. Our proposed system, IMUCoCo, can 
potentially benefit from these advances to enable rapid prototyp-
ing of motion sensing systems without requiring additional data 
collection or extensive model training. 

3 Design of IMUCoCo 

3.1 System Overview 
3.1.1 Insights. IMUCoCo’s architecture aims to enable scalable 
learning of mapping countless potential placements of IMUs into 
a tractable space. Unlike conventional approaches, IMUCoCo enu-
merates a massive number of possible placements at training time. 
For this reason, we must restrict the growth of the architecture size 
with respect to the number of IMU placements. 

We draw insights from several related fields. Articulated hu-
man pose models [23] render realistic human body meshes from 
compact parameters, such as joint rotations and body shapes. Tech-
niques such as blend skinning formulate mesh surfaces as weighted 
bone transformations. Inspired by this, IMUCoCo is designed to 
align IMU signals to joint movement representations, limiting the 
target space to a constant size. In addition, coordinate-based or im-
plicit neural representation approaches model signals as a neurally 
parameterized function of coordinates, demonstrating a powerful 
ability to perform tasks such as view synthesis [27] and compres-
sion [38]. Leveraging this idea, IMUCoCo modulates the IMU signals 
by their coordinates, effectively encompassing the spatial relation-
ship among various placements without repeatedly increasing the 
size of the input layers. 
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3.1.2 Architecture. The IMUCoCo maps a variable number of IMU 
devices placed on the body to a unified space, so that downstream 
models, such as a pose estimation model, can function without 
retraining for different IMU placements. The placements of the 
devices are represented as spatial coordinates in the 3-dimensional 
space, formally as r = (𝑥 , 𝑦, 𝑧). This spatial coordinate is measured 
relative to the root of the human body during a standard T-pose and 
remains unchanged until the IMU device is repositioned or removed 
from the human body. Such location information can be easily 
obtained for users and does not need to be error-free. For example, 
one approach is simply to tap on the corresponding location on a 
rendered avatar or simply state one of the predefined locations, such 
as the neck, ankle, or elbow. We discuss other potential approaches 
to obtain coordinates in real life in Section 6. 

Inspired by the kinematic trees used for articulated human body 
models [23], IMUCoCo breaks the whole body feature space into 24 
joint nodes, represented as z = {z1, .., z24}, which corresponds to 
the motion of each joint. Each of these joint nodes is then processed 
through a separate pathway that maps the IMU device’s signal into 
the corresponding joint node features. 

As shown in Figure 3, IMUCoCo comprises several modules. 
First, each IMU’s signal is passed through a Motion Feature En-
coder (MFE) to encode the raw IMU data. At the same time, device 
placement is encoded using a Sensor Coordinate Encoder (SCE) 
to derive placement codes that inform the transfer function for 
the corresponding features into the target joint node feature. After 
this step, the Joint Node Modulator (JNM) takes both the extracted 
IMU features and the placement codes. It modulates the features to 
produce a representation that describes the target joint’s movement. 
To train these modules, the features transferred to the joint node 
are passed to auxiliary regression tasks using Kinematics Regres-
sors (KRs) to regress to kinematics attributes, including velocity, 
position, and orientation, as well as a full-body Pose Regressor 
(PR) to infer the full-body pose. The KRs and PR are dropped once 
the training is completed. A detailed training architecture and pro-
cedure are illustrated in Appendix A.2. In the next subsections, 
we describe each module of IMUCoCo, placement adaptation, and 
applying IMUCoCo for downstream tasks in further detail. 

3.2 IMUCoCo Modules 
3.2.1 Motion Feature Encoder (MFE). The Motion Feature Encoder 
(MFE) module encodes the raw IMU input into the IMU feature rep-
resentations. This module is analogous to the conventional method 
of feature extraction for IMU signals. The MFE module first projects 
the data from a single IMU’s 9 channels into higher dimensions 
using a linear layer with ReLU activations. We implement MFE 
using an LSTM model following previous studies [15, 28, 53]. We 
chose a single-directional LSTM over a bi-directional one to pre-
serve historical information without the limitation of fixed window 
sizes [51]. Formally, the MFE module for a joint node is represented 
by h = MFE(s), where s is one input IMU signal from one point on 
the body, and h is the extracted feature. 

3.2.2 Sensor Coordinate Encoder (SCE). The Sensor Coordinate 
Encoder (SCE) module encodes the sensor coordinate 𝑟 = (𝑥, 𝑦, 𝑧) 
into placement codes 𝑞 that instruct the subsequent modules of 
IMUCoCo to adapt to the sensor’s placement. The detailed structure 

Figure 4: The detailed architecture of the Sensor Coordinate 
Encoder (SCE) module. The standardized sensor coordinates 
(𝑥 , 𝑦, 𝑧) are encoded using periodic functions. The sensor re-
gion category (𝑘 ) is encoded using a learnable embedding 
layer. The concatenated features are passed through fully 
connected (FC) layers, producing multi-layers of placement 
codes q(𝑙 ) for each layer 𝑙 . 

of SCE is shown in Figure 4. First, we standardize the raw spatial 
coordinates to have the origin at the target joint location 𝑟 𝑗 , divided 
by the range of all vertex spatial coordinates. Formally, this is 
represented by 𝑟𝑠𝑡 = (𝑟 − 𝑟 𝑗 )/(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 ) , where 𝑟𝑚𝑎𝑥 and 
𝑟𝑚𝑖𝑛 are obtained by taking the maximum and minimum values of 
each of the three axes on the coordinates of all vertices. Previous 
research has shown that applying positional encoding helps extract 
high-frequency changes along coordinates [27]. Following this, the 
standardized coordinate r𝑠𝑡 is passed through a positional encoding 
using periodic functions. This mapping is defined as: 

𝜙 𝑓 (r𝑠𝑡 ) = [sin(2𝜋 𝑓 · r𝑠𝑡 ), cos(2𝜋 𝑓 · r𝑠𝑡 )] (1) 

, where 𝑓 represents the frequency bands in increasing powers of 
2, i.e., 𝑓 = 2𝑝 for 𝑝 = 0, 1, . . . , 𝑛 𝑓 𝑟 𝑒𝑞 − 1. This encoding transforms 
𝑟𝑠𝑡 into a high-dimensional feature space that provides multi-scale 
spatial information. 

Additionally, we partition the human body surface into 24 re-
gions based on joint positions. Our intuition is that the region where 
the sensor is placed provides a semantic meaning that is useful to 
determine the transference as well. A detailed illustration of the par-
tition is provided in Appendix A.2. Thus, for each IMU sensor, we 
categorize its placement region into one of the 24 regions, denoted 
as 𝑘 , based on the provided coordinate 𝑟 . Subsequently, we encode 
the category of regions 𝑘 corresponding to the spatial coordinate 
using a learnable embedding layer, denoted as 𝐸𝑚𝑏 . The positional 
encodings and the region embedding are concatenated to form the 
input feature vector, denoted as q(0) = [𝜙 (𝑟𝑠𝑡 ), Emb(𝑘)], to the 
subsequent 𝐿 fully-connected (FC) layers. 

The first FC layer takes input from q0, while subsequent fully 
connected layers produce placement codes. Formally, for layer 𝑙 : 

q(𝑙 ) = FC(𝑙 ) 
 
q(𝑙 −1) 

 
(2) 

, where q(𝑙 ) = (𝛾 (𝑙 ) , 𝛽 (𝑙 ) ) are the placement codes that subse-
quently inform the modulation of the motion features based on 
placement. Finally, the output of the SCE module is a list of place-
ment codes q = {q(1) , . . . , q(𝐿 ) }, one for each MLP layer. 

3.2.3 Joint Node Modulator (JNM). The Joint Node Modulator 
(JNM) modulates the features obtained from the MFE module to 
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the features representing the corresponding joint kinematics on 
the body based on 𝑞, the placement codes generated from the SCE 
module. Similar to MFE, we adopt an LSTM-based structure to en-
code the temporal information of the motion feature corresponding 
to each joint node. For each layer, we applied Feature-wise Linear 
Modulation (FiLM) [33] to the LSTM outputs to allow modulating 
the motion features based on the inferred placement codes. The 
input to the first layer is just the output of the corresponding MFE 
module z(0) = h. Formally, for layer 𝑙 in the JNM module, 

z(𝑙 ) = LSTM(𝑙 ) 
 
𝛾 (𝑙 ) ⊙ z(𝑙 −1) + 𝛽 (𝑙 ) 

 
(3) 

Finally, the output of the JNM module is the last layer’s output 𝑧 (𝐿 ) . 

3.2.4 Kinematics Regressor (KR) and Pose Regressor (PR). We used 
regressions to kinematic attributes as an auxiliary task to learn 
useful representations of cross-placement IMU signals. To achieve 
this, we used two linear layers with ReLU activation as a Kinematics 
Regressor (KR). We used this straightforward architecture for KR 
primarily to enforce the quality of representations learned only 
from the previous modules instead of letting a complex model 
excessively compensate for the performance of the regression task. 
For each joint node, we used five joint-level KR modules to predict 
the joint’s velocity, position, local orientation, global orientation, 
and the body root’s velocity. In addition, we used one body-level 
Pose Regressor(PR) module, with the same architecture as KR, that 
takes the features from all 24 joints and together regresses to the 
full-body pose. Note that the KRs and PR are used as auxiliary 
regressors only and will be removed from the model once it is 
trained. 

3.2.5 Matchmaker. When IMUCoCo is supplied with a variable 
number of IMUs, the Matchmaker module dynamically allocates 
joint nodes to the optimal IMU device based on a loss map. Specif-
ically, after training, for each joint node, we iterate through all 
vertices on the body, assuming that an IMU is placed at each vertex, 
and compute the loss values for transferring information to the tar-
get joint node. This process is repeated for all 24 joints, producing 
a loss table M ∈ R 24×𝑉 , where 𝑉 is the total number of vertices in 
the articulated pose model, and M( 𝑗 , 𝑣 ) represents the loss value of 
a virtual IMU placed at the vertex 𝑣 when transferred to the target 
joint node 𝑗 . With the constructed loss table, each of the 24 joint 
nodes will be assigned to one IMU device that gives the lowest loss. 
Formally, given a set D of IMU devices attached to the body, where 
the IMU 𝑑 is located at the coordinate r𝑑 , the optimally assigned 
IMU for the joint node 𝑗 is computed as 𝑑 ∗

𝑗 = argmin𝑑 ∈D M( 𝑗 , 𝑣r𝑑 ), 
where 𝑣r𝑑 denotes the nearest vertex in the loss table to the pro-
vided coordinate r𝑑 . For a newly attached or moved device, we use 
its coordinates to query the table and retrieve 24 loss values, and 
update the assignment accordingly. Note that this module is only 
used during test time. 

3.3 Training Process 
As mentioned in the introduction, the absence of a dedicated dataset 
for IMU data on continuous body coordinates presents a technical 
challenge. We introduce an approach to synthesizing virtual IMU 
data across the entire body mesh, expanding beyond the joint-only 

focus of previous research. This section explains the approach, 
followed by details of our training approach. 

3.3.1 Virtual IMU Synthesis. Training IMUCoCo requires IMU data 
sampled from all over the body surface, for which relying on real 
IMU data is not feasible. We synthesized our IMU data based on 
human pose datasets, including AMASS [24], DIP-IMU [15], and 
other XSens-based datasets [11, 13, 26, 29, 31]. From these datasets, 
we obtained full body pose and used the SMPL model [23] for 
forward kinematics to determine the positions of joints and mesh. 

To calculate the acceleration, we applied the second derivative 
of the positions. Existing work typically simplifies bone orienta-
tion to synthesize IMU orientation (e.g., [28]). While this approach 
may function well when the IMU is attached to areas that do not 
deform, such as the middle of the upper arm, it is inaccurate for 
areas that deform, such as abdominal regions and areas close to 
each joint (e.g., the elbow). Thus, we calculate the orientation based 
on the faces of the mesh. These virtual IMUs are also virtually cali-
brated using a T-pose [52] We include a more detailed illustration 
in Appendix A.1. 

3.3.2 Loss Functions. We used a combination of loss functions to es-
tablish learning feature representations suitable for the downstream 
tasks. First, we used kinematic loss Lkinematic for multiple kine-
matic attributes, including velocity, root velocity, position, global 
orientation, and local orientation, to facilitate the model in extract-
ing kinematic quantities. For velocity, position, global orientation, 
and local orientation, we used Mean Squared Error (MSE) loss. For 
root velocity, we used multi-frame losses at consecutive 1, 3, 9, and 
27 frames [52]. Second, we used the full-body pose loss Lpose in 
the global frame, also implemented as an MSE loss, to encourage 
the model to coordinate organically with the representation from 
different joint nodes. Note that this fully-body pose loss can only be 
calculated when all the joint nodes have completed their forward 
passes, which, if done at the same time, can add an excessive mem-
ory burden during training. We used a buffered approach to resolve 
this, as described in Appendix A.2. Third, we used an alignment loss 
Lalign based on cosine similarity to encourage IMUCoCo to pro-
duce a feature representation for the sampled mesh synthetic IMUs 
similar to the representation for the joint synthetic IMU. Formally, 
the training loss can be represented as: 

L 𝑗 (z𝑗 ) = 𝜆kinematicLkinematic (𝐾𝑅 (z𝑗 ), K𝑗 GT) 
+ 𝜆poseLpose (𝑃𝑅 (z𝑗 , zbuffer), PGT) 
+ 𝜆alignLalign (z𝑗 , zref) 

(4) 

, where K𝑗 GT are the true kinematics of the joint, PGT is the ground 
truth pose, z𝑗 is the representation obtained from the mesh IMU, 
zref is the reference representation obtained from joint virtual IMU, 
and zbuffer is the buffered representations initially filled with the 
joint virtual IMU representations while gradually replaced by the 
mesh IMU representations, and 𝜆kinematic, 𝜆pose, 𝜆align are hyperpa-
rameters for weighing the losses. 

3.3.3 Training Setup. Training such a model consumes a large 
dataset, and we designed a training scheme to minimize the com-
puting resources needed. Our training process is split into two 
phases. In phase one, we train the IMUCoCo model only with the 
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24 joint virtual IMUs using kinematic loss and pose loss until con-
vergence. In phase two, with the warmed-up model, we sampled 
mesh IMUs and trained them with kinematic and pose loss while 
aligning them to joint IMUs. A more detailed procedure is illustrated 
in Appendix A.2. Overall, we trained our model on one L40S GPU, 
which has 48GB CUDA VRAM, for 200 hours, including 90 hours 
of training in the joint-only phase and 110 hours of training in the 
end-to-end phase. While training IMUCoCo is relatively prolonged, 
mainly due to the need to consume a large number of samples on 
the human body surface, this model is still very lightweight with 
only 23M parameters and feasible for inference without excessive 
computing. 

3.4 Applying IMUCoCo to Downstream Tasks 
The features extracted from IMUCoCo enable the downstream 
model, such as a pose estimation model, to process without wor-
rying about the number or locations of IMU devices. To train a 
downstream task, one can freeze the IMUCoCo model and feed 
the IMU data from the devices existing in this dataset for the task. 
During training, each provided IMU went through the placement 
adaptation process and was matched to the joint node to produce 
the extracted representations. For our paper, we explored pose 
estimation and activity recognition as our downstream tasks. 

For pose estimation, we mainly adopt the DynaIP [58] archi-
tecture, as a state-of-the-art pose estimation model using 6-IMU 
inputs. As DynaIP itself does not give translation estimation, we 
adopt the translation estimation module from TransPose [52]. We 
use the abbreviation DTP (DynaIP with TransPose) to denote this 
pose estimation model. For convenience of presentation, in the 
evaluation section, we use IMUCoCo to refer to IMUCoCo + DTP 
in the context of pose estimation. We then trained a pose estimator 
using the conventional 6 IMUs (pelvis, head, left lower arm, right 
lower arm, left lower leg, right lower leg) from AMASS, DIP-IMU, 
and XSens dataset [58]. 

For activity recognition, we used a Spatial-Temporal Graph Con-
volutional Neural Network (ST-GCN) targeted for skeleton-based 
activity recognition [50]. We then trained our activity recognition 
model using the 3 IMUs (wrist, pocket, ear) using custom datasets 
that we collected ourselves. For convenience of presentation, in 
the evaluation section, we use IMUCoCo to refer to IMUCoCo + 
ST-GCN in the context of activity recognition. Both models are 
trained when freezing the IMUCoCo model and only using the IMU 
data at the different locations provided in the dataset. We conducted 
separate ablation experiments that verified that the improved per-
formance is attributable to IMUCoCo rather than the downstream 
models. 

4 Evaluation 

4.1 Evaluation Overview 
We conducted two studies to evaluate the following hypotheses: 

(1) IMUCoCo achieves consistent body motion sensing perfor-
mance when IMUs are placed at atypical locations. 

(2) IMUCoCo delivers comparable body motion sensing perfor-
mance to existing systems when IMUs are placed at typical 
locations. 

Figure 5: Illustration of the dense IMU placement configura-
tions used in Evaluation #1 shown on a right-handed person. 
We started with the standard 3 IMU placement (wrist, thigh, 
ear) to mimic the most popular consumer devices [28]. Addi-
tionally, we placed a dense set of IMUs on one of the three 
body sections (arm, leg, or torso). On the arm, we chose the 
shoulder, the middle of the upper arm, the upper arm just 
above the elbow, the forearm just below the elbow, and the 
hand. On the leg, we chose the upper thigh, lower thigh, shin, 
ankle, and foot. On the torso, we chose the neck, upper chest, 
lower chest, upper abdomen, and waist. For a left-handed 
person, the placements were mirrored accordingly. 

For Evaluation #1, we used our newly collected custom dataset to 
assess performance in body pose tracking and activity recognition 
across sensor placements. For Evaluation #2, we utilized multiple 
existing datasets to evaluate body pose tracking capabilities. 

4.2 Evaluation #1: Motion Sensing at Atypical 
Locations 

4.2.1 Data Collection. Due to the absence of datasets with dense 
IMU placement, we collected our own custom dataset to understand 
IMUCoCo’s performance at fine-grained placement variations. We 
utilized 8 Apple Watches (Series 7 or newer) with a custom data 
collection application that we implemented to record IMU data 
at 50 Hz. We collected motion capture data using the OptiTrack 
system. 

We recruited 12 participants from our institution (8 males, 4 
females; age range 23-33; 1 left-handed, 11 right-handed) and col-
lected their motion capture data. Participants wore a mocap suit 
with optical markers, followed by skeleton calibration in the Opti-
Track system. The participants also wore watches at three typical 
locations (ear, wrist, and pocket). Additionally, we placed five more 
devices on one of the three dense placement configurations: arm, 
leg, and torso, as illustrated in Figure 5. Participants then performed 
jumps to align timestamps across all IMU devices. For each place-
ment configuration, participants performed a set of predefined ac-
tivities inspired by previous research [17], designed to encompass 
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(a) (b) 

Figure 6: (a) Pose tracking Global Angular Error (GAE) is measured at different sensor placements, averaged over all activities. 
IMUCoCo achieves lower error than the state-of-the-art [48] when IMUs are placed at typical positions (bar graph on the right 
in (a)). A similar effect is seen at all atypical positions (i.e., bars on the left). Error bars show standard deviation. (b) The same 
effect was seen for cumulative translation error using different sensor placements for the lower body. IMUCoCo achieves 
consistently lower translation error than MobilePoser over time. The effect remains the same as the participant changes the 
device location along their leg. 

diverse body movements: walking, running, vacuuming, watching 
television, drinking water, table cleaning, golf swing, shot put, and 
squats. Before each activity, the participants performed a T-pose 
for calibration purposes [52], with each activity lasting 30 seconds. 
Participants rested between placement configurations as needed, 
and the entire data collection process required approximately one 
hour per participant. All activities were video-recorded with times-
tamps for subsequent annotation. Following data collection, we 
extracted the OptiTrack body pose data, synchronized it with all 
IMU sensor readings, and annotated the dataset with activity labels. 
Overall, our collected dataset consists of 3 hours of body motion 
data in total. All studies are approved by our institution’s IRB. 

4.2.2 Body Pose Tracking. We first evaluated the body pose track-
ing performance of IMUCoCo by comparing different sensor place-
ments, specifically examining how error metrics vary as the IMU 
sensor is progressively moved along a body part (i.e., arm, leg, or 
torso). Consistent with prior research [46], we employ Global An-
gular Error (GAE) 1 that serves as our primary metric for pose 
estimation quality, which quantifies the rotational discrepancy be-
tween the ground truth and the reconstructed global segment ori-
entations. It is important to note that state-of-the-art systems, such 
as MobilePoser [48], do not support IMUs positioned at unconven-
tional locations. Therefore, to keep the comparison fair, we compare 
IMUCoCo and previous work for sensors placed in standard loca-
tions. For atypical positions, we compare the performance within 
IMUCoCo’s output. 

These comparisons are summarized in Figure 6a. Overall, IMU-
CoCo showed consistency in performance as the IMU device moves 

1We followed the procedure with DiffusionPoser [46], where we ignored root, wrists, 
fingers, and toes joints and excluded them from averaging the final error calculations. 
For this, our reported error values may appear greater than their originally reported 
ones. 

along the arm, leg, and torso regions. In particular, we observed only 
slight variation as the IMU is repositioned along the arm. Slightly 
higher errors appear when the ear sensor is moved to the lower 
chest. We attribute this mainly to the flexibility of clothing, where 
the physical IMU often folds or shifts together with the fabric, in-
troducing additional motion artifacts that are not representative of 
true body movement. In addition, IMUCoCo demonstrated superior 
performance (GAE = 27.6°) in pose estimation than MobilePoser [48] 
(GAE = 31.8°) (𝑝 < .001). Similarly, IMUCoCo showed resistance in 
translation estimation as the user moves the leg IMU from thigh 
pockets to other areas across the leg, as shown in Figure 6b. It is im-
portant to note here that, unlike MobilePoser, IMUCoCo or DTP are 
not specifically trained or fine-tuned with the IMU at these locations 
(wrist, thigh pocket, ear), and thus even the standard placement 
relies on IMUCoCo’s capability to transfer input IMU signals to the 
DTP model that were trained using the 6-IMU configuration. 

We then measured the pose estimation performance from IMU-
CoCo using standard placement (wrist, thigh pocket, ear) to the 
optimal placement for each type of activity. Figure 7 summarizes 
the result. We see that selecting the best placement for IMUCoCo 
enables greater tracking performance (GAE = 24.8°) compared to 
the standard location (GAE = 27.6°) (𝑝 < .001). For some specific 
activities, changing the placement appears to have more impact on 
the pose estimation accuracy. For instance, golf swings are better 
captured by moving the IMU from the wrist to below the elbow 
(or the forearm). For computer work, moving the IMU from the 
thigh pocket to the ankle produces less error (GAE=22.8°) than the 
standard location of keeping the sensor in the pocket (GAE=30.9°). 
We examined the inferred pose difference and observed that the 
primary difference is the angle of the hip with respect to the ground 
when sitting. We consider that this difference arises mainly due to 
the more rigid nature of the lower leg clothing and bones, compared 
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Figure 7: Comparison of Global Angular Error (GAE) when the sensor is placed at Standard Placements (wrist, pocket, ear) and 
when one of the three sensors is moved to an optimal location. For example, for the Golf activity, the model generates a better 
pose (i.e., lower error) when the IMU on the wrist is moved below the elbow. The Figure also shows MobilePoser’s GAE for the 
standard placement. Error bars show standard deviation. 

Figure 8: A demonstration of pose estimation when the sen-
sor on the arm is moved, i.e., from the wrist (top row) to just 
below the shoulder (bottom row). When the user performs a 
sweeping motion (ground truth), IMUCoCo is able to adapt 
to the new IMU placement and infer the upper arm motion 
accurately (bottom row, third column). MobilePoser still as-
sumes the input was at the wrist and incorrectly only slightly 
raises the forearm (bottom row, fourth column). 

to the IMU in the upper thigh pocket, which introduces additional 
flexibility when sitting. Thus, if a user wants to better capture a 
specific type of posture, IMUCoCo can recommend and support 
optimal sensor placement. 

We also evaluated the pose estimation results with different sen-
sor placements in more detail to understand the sources of errors. 
Consistent with our hypothesis, IMUCoCo effectively adapts the 
sensor based on its placement coordinate, and renders the pose 
reasonably based on the sensor placement. Figure 8 shows an exam-
ple motion of sweeping to clean a table, which primarily involves 
arm movements while leaning forward. As the IMU is repositioned 
from the wrist to the upper arm (below the shoulder), IMUCoCo 
can adapt the signal and accurately infer the upper arm motion. We 
attempted to retrieve the pose estimation from MobilePoser [48], 
which is not designed to take IMU input from the upper arm. As 
expected, the state-of-the-art that is not designed to adapt to new 
sensor placements did not render the pose accurately. It is impor-
tant to note that IMUCoCo still lacks sensor input from the lower 
arm and can only provide its best prediction by naturally extend-
ing the lower arm. In this case, some error in lower arm tracking 
is anticipated. Based on these observations, we conclude that un-
derstanding tracking confidence for all body parts, given specific 
sensor placements, and controlling the level of model hallucination 
is essential for critical applications. 

4.2.3 Body Activity Recognition. We divided our 12 participants 
into six groups of 2 and performed a 6-fold cross-validation to exam-
ine the activity recognition performance of our approach. Figure 9 
summarizes the results of the averaged macro F1-score from 6-fold 
cross validation. Overall, using the three standard placements, IMU-
CoCo achieves 73.7 in macro F1 score. We then tested performance 
by repositioning the wrist IMU at other locations along the arm. 
As shown in Figure 9, relocation of the IMU to the hand or lower 
arm (below the elbow) has minimal impact on overall performance, 
while relocation to the upper arm decreases activity recognition 
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Figure 9: Activity recognition results in macro F1-score across 
10 activities with 6-fold cross validation on our custom 
dataset when placing the arm IMU at different locations. 
Higher is better. Error bars show standard deviation. 

Table 1: Comparison of pose estimation approaches using the 
conventional 6 IMUs (pelvis, head, left wrist, right wrist, left 
shank, right shank) on TotalCapture dataset. Lower Global 
Angular Error (GAE) is better. 

Method Compatible Placement GAE (deg) 

Transpose [52] Fixed 6 16.1 
PIP [51] Fixed 6 14.4 
PNP [53] Fixed 6 10.4 
DiffusionPoser [46] Select From 13 14.4 
IMUCoCo Anywhere on Body 14.0 

accuracy. This decrease is reasonable, as fine-grained hand or lower 
arm motions cannot be directly captured from an upper arm place-
ment, but must instead be inferred by the model, naturally creating 
additional challenges for activity recognition. 

4.3 Evaluation #2: Motion Sensing at Typical 
Locations Using Existing Datasets 

4.3.1 Body Pose Tracking from 6 IMUs. We systematically analyzed 
the performance of IMUCoCo in tracking body poses with state-
of-the-art models using the TotalCapture dataset [41] for ease of 
comparison with previous work. Following Wouwe et al. [46], we 
evaluated using all six real IMU sensors placed in the pelvis, head, 
wrists, and shanks, and also subsets of them. In this section, we use 
different terminology for sensor locations to remain consistent with 
the datasets used. In consistency with previous work [46, 51–53], 
we used TotalCapture only for testing and excluded it from our 
training data set at all stages. 

The comparison using the conventional 6 IMUs (pelvis, head, 
left wrist, right wrist, left shank, right shank) on the TotalCapture 
datasets is summarized in Table 1. Overall, IMUCoCo with DTP 
still achieves reasonable performance, even when compared with 
pose estimation models specifically designed for 6-IMU setups. We 
believe that the 6-IMU configuration offers a unique advantage for 
estimating pose, as it converts all the leaf IMU to be relative to 
the pelvis IMU, which eliminates the signal variation caused by 

Table 2: Comparison of Global Angular Error (GAE) between 
IMUCoCo + DTP and DiffusionPoser under different test 
placements using the TotalCapture dataset. Lower is better. 
(P = pelvis; H = head; RLA = right lower arm; LLA = left lower arm; 
RLL = right lower leg; LLL = left lower leg) 

Test Placement IMUCoCo DiffusionPoser [46] 

All 6 IMUs 14.0 14.4 
P+H+RLA+LLA+RLL 15.7 19.4 
P+H+RLL+LLL 21.8 24.9 
P+RLL+LLL 23.8 36.4 
RLL+LLL 26.6 39.2 
H 32.0 39.2 

different facing directions. This normalization approach is used in 
several prior works, such as PNP [53], DynaIP [58], PIP [51], and 
Transpose [52]. For Diffusion Poser [46], IMUPoser [28], Mobile-
Poser [48], and our work, we can only use the global frame IMU 
measurements as these use cases do not always have a pelvis IMU. 

4.3.2 Body Pose Tracking from Flexible IMUs. Next, we examined 
the performance of IMUCoCo using a flexible combination from a 
set of sensor locations. DiffusionPoser [46] employs a generative 
diffusion process to infer the missing sensor and pose features and 
supports IMU placement from at most 13 possible locations. To 
the best of our knowledge, DiffusionPoser is currently the most 
flexible IMU-based full-body pose method. Table 2 summarizes 
the comparison result using 6, 5, 3, 2, and 1 IMU sensors on the 
TotalCapture dataset. IMUCoCo performs better on all the listed 
sensor combinations than DiffusionPoser [46]. 

4.4 Ablation Analysis 
In this section, we provide a more detailed analysis of the indi-
vidual components of the IMUCoCo system and its application 
performance. The evaluation is conducted on both the benchmark 
dataset and our custom datasets. We first implemented DTP as our 
pose estimation model using the same configuration in the experi-
ment (Section 3.4), but without using IMUCoCo at all, denoted as 
w/o IMUCoCo. To ensure the model has the same dimension and 
depth, we mapped the original IMU inputs using 24 different linear 
projections so that it shared the same dimensions as the extracted 
features from IMUCoCo. We hypothesize that while these mod-
els should still provide reasonable performance on the benchmark 
datasets with the same 6-IMU configurations, they will generalize 
poorly to new sensor locations in our custom dataset. 

Then, we specifically tested the detailed designs of the IMUCoCo 
model by evaluating the impact of the sensor coordinate informa-
tion. For this testing, we drop the sensor coordinate information by 
always setting it to zero; we name this approach IMUCoCo w/o Sen-
sor Coordinates or w/o SC. In this test, each joint node will transfer 
the matched IMU signal, but without knowing where exactly the 
sensor comes from. 

Regardless of the models used in the ablation analysis, the input 
dimensions were still allocated the same using the IMUCoCo’s 
transfer loss map based on the spatial location of the provided real 
IMU sensors, as otherwise, the downstream model will have no 
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Table 3: Ablation analysis of IMUCoCo for pose estimation 
measured in Global Angular Error (GAE) on TotalCapture 
datasets. Lower is better. (P = pelvis; H = head; RLA = right lower 
arm; LLA = left lower arm; RLL = right lower leg; LLL = left lower 
leg) 

Test Placement IMUCoCo w/o IMUCoCo w/o SC 

All 6 IMUs 14.0 16.6 26.8 
P+H+RLA+LLA+RLL 15.7 18.1 26.5 
P+H+RLL+LLL 21.9 33.8 27.2 
P+RLL+LLL 23.8 35.7 27.9 
RLL+LLL 26.7 42.9 35.0 
H 32.0 43.5 37.2 

Table 4: Ablation analysis of IMUCoCo for pose estimation 
measured in Global Angular Error (GAE) on our custom 
datasets. Lower is better. The arrow indicates moving one 
standard placement (wrist, thigh, and ear) to another place-
ment. 

Test Placement IMUCoCo w/o IMUCoCo w/o SC 

wrist, pocket, ear 27.6 43.4 35.0 
wrist → arm 28.6 43.5 34.9 
pocket → leg 29.3 42.0 36.2 
ear → torso 29.1 42.9 35.2 

information on where to take the input of various IMU sensors to 
produce a meaningful comparison. 

Table 3 shows the GAE on the approaches above for pose esti-
mation on the TotalCapture dataset. In comparison with DTP w/o 
IMUCoCo, which is specifically trained only using the 6-IMU con-
figuration as used for this dataset, IMUCoCo still achieves better 
performance. We attribute this improvement to the known IMUs, 
primarily to the architecture of IMUCoCo, which not only enables 
flexibility in testing, but its scalable architecture during the pre-
training phase allows utilizing the information from rich augmented 
mesh IMU signals, which helps to learn a more robust motion fea-
ture representation. Comparing w/o SC to w/o IMUCoCo, we found 
a significant degradation of performance if using IMUCoCo without 
providing the correct IMU device coordinate. In this case, the joint 
node module in IMUCoCo confuses how to transfer the provided 
signal correctly. This also verifies that IMUCoCo has learned to 
adapt based on the sensor coordinate of IMU devices. 

Table 4 presents GAE for different IMU placement configurations 
on our custom dataset, where each row corresponds to a variant of 
the standard 3-IMU setting (wrist, thigh pocket, ear) with one IMU 
repositioned at each time. The model trained without IMUCoCo 
fails immediately across all configurations, as it cannot generalize to 
these unseen or altered IMU placements from its training. Note that 
this model is trained using the 6-IMU combinations, rather than the 
wrist, thigh pocket, and ear. The version without sensor coordinate 
(w/o SC) still shows significant degradation in comparison with 
IMUCoCo, confirming that IMUCoCo utilizes the sensor coordinate 
information to adapt accurately to the input IMU signals. 

5 Application Scenarios 
IMUCoCo allows users to put their devices with IMUs anywhere 
they prefer. This capability opens up a wide variety of novel appli-
cations (e.g., Figure 1). 

IMUCoCo allows end-users to utilize the myriad of smart devices 
they may have that are equipped with an IMU. Prior work has fo-
cused on enabling motion and pose sensing from the most common 
devices. We support the user to use the device they have or need. 
For example, runners typically do not like to keep their phones in 
their pants pockets. We enable them to track their running form, 
if they like, from an armband placement. Similarly, if a user has a 
necklace or smart innerwear, which sometimes has an IMU built 
into the waistband, we do not need to retrain a model that is tuned 
to estimate torso movements from the ear. 

IMUCoCo adapts to shifts in sensor placement that may occur 
throughout the day. For example, a user might prefer to keep their 
phone in different pockets throughout the day or in various ac-
tivities. As this user moves their phone from their pant pocket to 
their sweatshirt’s kangaroo pocket to their pants’ back pocket to 
the forearm pocket in their ski jacket, IMUCoCo adapts to these 
changing placements and provides accurate pose and activity esti-
mates for those specific activities. As long as IMUCoCo is aware of 
the active sensor’s location, it can adjust to these changes without 
the need for switching models. This flexibility in changing device 
locations dynamically supports adaptive sensing, aligning with the 
variable contexts of daily activities. 

Moreover, IMUCoCo also supports changing or suggesting place-
ments to meet the user’s specific needs. Khurana et al. [20]proposed 
a detachable smartwatch that can be placed on different parts of the 
body depending on the end need. IMUCoCo can now support such 
scenarios with accurate motion sensing. For example, a person with 
two IMU devices can record their footwork when playing soccer by 
attaching them to two thigh pockets (See Figure 1C). If the user’s 
focus then shifts to upper-body posture, the user can move the 
sensor to their chest or arms. Or, if the user wants to track their 
squat form more accurately, we can recommend an optimal place-
ment for the watch (perhaps wear it as an anklet) and help the user 
ensure that their knees do not go beyond their toes. Throughout 
these adjustments, IMUCoCo consistently provides tracking and 
analysis without the need to switch or retrain models. No doubt, 
the placement recommendations will need to take into account the 
user’s device form factor and available adapters/straps. 

6 Limitations and Future Work 
The current implementation of IMUCoCo is not without limitations. 
First, the current synthetic IMU data generation method is based 
on the assumption of a rigid human body. However, in practical 
scenarios, IMU devices are often attached to clothing, which intro-
duces variability due to the flexibility and movement of the fabric. 
This discrepancy between the synthetic data and real-world data 
results in inaccuracies in the signals, as the synthetic model does 
not account for the flux caused by clothing. Future work should 
continue refining the synthesis process to include models that simu-
late the impact of clothing [59] and other factors such as contacting 
objects. Enhancing the realism of synthetic datasets will improve 
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the robustness and applicability of the system across more realistic 
human activity scenarios. 

Secondly, it is challenging to accurately estimate full-body move-
ments from sparse sensors placed at any location, especially when 
the point of interest is far from the sensor. When the placement is 
not ideal for an application, IMUCoCo will still produce its estimate 
but with higher errors. The model outputs can involve hallucina-
tions, relying on learned correlations within the training data rather 
than on direct observations. This approach may suffice for certain 
applications, but it falls short when precise and reliable full-body 
tracking is required. Future improvements should aim to increase 
the transparency of model predictions by visualizing which body 
parts IMUCoCo estimates with confidence and which parts are less 
accurately represented. This enhancement will provide users with 
a clearer understanding of the model’s capabilities and limitations, 
facilitating a more informed application of the technology in com-
plex scenarios. Moreover, it is crucial to understand what potential 
placement might be preferable by users and by applications. Such 
consideration extends beyond optimizing performance to include 
factors such as comfort and the stability of device attachment. 

Finally, future work shall consider further simplifying the speci-
fication of the on-body IMU placement by exploring an intuitive 
interface or calibration step. For instance, Sztyler and Stucken-
schmidt [39] have proposed a method to recognize the on-body 
location of each device from IMU signals. In addition, using a ded-
icated network or sensing technology to identify the location of 
the device might also be possible. These developments would lower 
the barriers for configuring IMUCoCo and support the application 
scenarios we discussed above. 

7 Conclusion 
The integration of IMUs into consumer devices has significantly 
advanced the field of human motion and pose estimation. Our eval-
uations demonstrated that IMUCoCo can effectively utilize IMUs 
placed at flexible locations on the body by projecting their signals 
onto a placement-adaptive representation, which can be adjusted 
for downstream tasks such as pose tracking and activity recog-
nition. IMUCoCo offers numerous advantages that enhance the 
practicality of on-body motion sensing: it accommodates devices 
at unconventional locations, allows for the seamless movement 
of devices throughout the day, and optimizes sensor placement 
based on specific activities, all while using a single model without 
the need for retraining. We believe our approach enables a wide 
range of practical applications, from personal fitness tracking to 
rehabilitation. More broadly, we hope our work encourages fur-
ther research in scaling up the development of IMU-based sensing 
models for human motion understanding. 
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Figure 10: Illustration of categorizing body regions based on 
horizontal and vertical planes passing through the joints at 
T pose. 

A System Details 
A.1 Virtual IMU Synthesis 
For virtual mesh IMU, we synthesize the orientation based on faces. 
Specifically, for each vertex on the human body mesh, we took the 
face norm as all the faces connecting to this vertex and took the 
average norm vector of the faces as the 𝑦-axis. The 𝑦-axis then 
always points outside the body surface and is perpendicular to the 
tangent plane of the body surface. 𝑧-axis is then determined by the 
direction orthogonal to the plane formed by the bone direction and 
the face norm, and the 𝑥 -axis is orthogonal to both 𝑦 and 𝑧-axis. 

We also synthesize IMU from the joints in addition to the vertices 
on the body surface to create a reference for IMUCoCo during 
training. To synthesize IMU and kinematics attributes for joints, 
we did not use the original joint positions. This is because the 
original joint’s acceleration and orientation do not fall into the 
same distribution as an IMU attached to the surface. For example, 
the orientation at the right elbow joint is similar to the orientation 
of an IMU attached to the lower arm, but its acceleration is more 
similar to the acceleration of an IMU attached to the upper arm. 
Thus, we modified the locations to sample the acceleration, velocity, 
and position of the joint from its child joint while keeping the joint 
orientation from its own. For example, the joint node at the right 
elbow will synthesize its acceleration from the right wrist, while 
keeping its own orientation at the right elbow. The coordinates 
of this joint node are defined by the root-centered position of the 

right wrist instead of the right elbow. For the leaf joint in the head, 
hands, and feet, we created five additional vertices on the body on 
the top of the head, fingertips, and toes to calculate acceleration, 
velocity, and position. 

A.2 Training Architecture and Procedure 
Figure 10 shows the categorization 𝑘 by sensor coordinates. The 
regions are partitioned by horizontal and vertical planes passing 
through the joints at T-pose. Vertices in each of the categorized 
regions often exhibit more similarities than those in distant region 
categories. Together with frequency-based positional encoding of 
the coordinates, the concatenated features are fed into the MLP 
layers to derive placement codes. 

Figure 11 shows the full architecture, including the auxiliary 
components and mesh IMU sampling, during the training process. 

We used a two-phase training procedure. In the first phase, we 
warm up the model using joint IMUs. The advantage of this phase 
lies in the small size of the input (24 joint signals), but at the same 
time, this input contains enough high-quality information that can 
lead to an accurate description of the full-body motion. Therefore, 
this step allows the model to provide a warm start to all the modules, 
especially to learn accurate KRs and PR that are used for supervision 
in the next phase. 

In phase two, we extensively sample the full-body dense mesh 
virtual IMUs from the body surface. We freeze the KRs, as each 
sample is trained repeatedly on the 24 joint nodes; otherwise, the 
KRs will overfit to this batch quickly. To focus on the regions that are 
physically plausible for transference, we apply a weighted stratified 
sampling scheme. We calculate a weight decay based on the number 
of hops from the sampled point to each joint node, as well as the 
initial vertex density of the articulated pose model, so that fewer 
hops lead to higher chances of being sampled. For each motion 
sequence, we first perform a forward pass using the 24 virtual joint 
IMUs, and save this representation as a buffer. Next, for each joint 
node, we sample a large amount (384 points per motion sequence in 
our training) of mesh virtual IMUs for each joint node, and perform 
a forward pass. The inferred feature from this forward pass will 
replace the corresponding joint feature from the buffer, and together, 
pass through the full-body pose regression. The advantage of this 
buffered approach is that gradient updates are applied to each joint 
node for each forward pass using the mesh virtual IMU, without the 
need to save the gradient and wait until all 24 joint nodes finish their 
forward pass (for which our GPU does not have enough memory 
to execute). We then applied the kinematic loss to both the output 
using the joint virtual IMU and the mesh virtual IMU, as well as 
the alignment loss between the two. 
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Figure 11: Overview of the IMUCoCo system during training time. 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Body Pose Tracking from IMUs
	2.2 Physical Activity Recognition from IMUs
	2.3 Advancements in On-Body Devices

	3 Design of IMUCoCo
	3.1 System Overview
	3.2 IMUCoCo Modules
	3.3 Training Process
	3.4 Applying IMUCoCo to Downstream Tasks

	4 Evaluation
	4.1 Evaluation Overview
	4.2 Evaluation #1: Motion Sensing at Atypical Locations
	4.3 Evaluation #2: Motion Sensing at Typical Locations Using Existing Datasets
	4.4 Ablation Analysis

	5 Application Scenarios
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References
	A System Details
	A.1 Virtual IMU Synthesis
	A.2 Training Architecture and Procedure




