
IEEE Internet ComputingPublished by the IEEE Computer SocietyMarch/April 2025 27

Modern society is at a critical inflection point with rapidly accelerating demand 
for energy due to growth in domestic manufacturing, datacenters, artificial 
intelligence (AI), electric vehicles, and electric heat pumps. Sustaining this growth 
while also reducing society’s carbon emissions will necessitate a shift beyond our 
long-standing focus on improving energy efficiency to optimizing carbon efficiency. 
This paper lays out a vision for a new field of computational decarbonization, 
which focuses on optimizing and reducing the lifecycle carbon emissions of 
complex computing and societal infrastructure systems. We identify an important 
class of decarbonization problems that arise from interdependencies across 
multiple infrastructure domains, including computing, transportation, the built 
environment, and the electric power grid. As we discuss, solving these problems 
will require developing novel computational techniques, algorithms, systems, 
and AI methods that sense, optimize, and reduce the operational, embodied, and 
lifecycle greenhouse gas emissions of societal infrastructure over long temporal 
and spatial scales.

There is now a broad consensus that society must 
undertake a rapid energy transition to reduce 
and, ultimately, eliminate its carbon emissions. 

However, despite promising advances in low-carbon 
energy technologies, such as renewable energy and 
energy storage, scientific experts and industry leaders 
generally acknowledge that many of the technologies 
necessary to achieve ambitious decarbonization goals 
do not yet exist.15 To reduce carbon emissions, research-
ers have long focused on reducing society’s energy 

consumption by optimizing energy efficiency in various 
domains, including computing, the built environment, 
and transportation. Unfortunately, while improving en-
ergy efficiency increases productivity and economic 
output—by enabling more to be done with less energy 
at lower cost—it alone is not sufficient to decarbonize 
society for multiple reasons. In particular, 1) energy-ef-
ficiency improvements are subject to rebound effects 
that generally serve to increase energy usage (referred 
to as Jevon’s Paradox3) and 2) there are fundamental 
bounds to any task’s energy efficiency that, in many cas-
es, we are approaching. For example, if historical trends 
continue, we will reach Landauer’s limit—the physical 
bound of computing’s energy efficiency—by the 2040s.12

Accelerating society’s decarbonization will require 
increasing our emphasis on directly optimizing for 
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carbon efficiency. While energy efficiency captures 
the work done per unit of energy consumed, carbon 
efficiency captures the work done per amount of car-
bon [and other greenhouse gases (GHGs)] emitted. 
Thus, a task’s carbon efficiency is a function of not 
only its energy efficiency but also its energy’s carbon 
intensity, i.e., the emissions from generating each unit 
of energy. As a result, energy-efficient systems can 
be carbon inefficient—if their energy derives from 
carbon-intensive, or “brown,” sources, i.e., by burning 
fossil fuels—and carbon-efficient systems can be en-
ergy inefficient—if their energy derives from zero-car-
bon renewables. Notably, optimizing carbon efficiency 
does not suffer from the aforementioned drawbacks: 1) 
it is not subject to Jevon’s Paradox since carbon is not 
an economic resource but an energy byproduct, and 
2) it is possible to be infinitely carbon efficient by using 
zero-carbon energy. However, since zero- or low-car-
bon energy largely comes from intermittent renewable 
sources, such as wind, solar, and hydro, its availability, 
and thus energy’s carbon intensity, varies substantial-
ly, e.g., more than an order of magnitude, over time and 
space (see Figure 1). As a result, optimizing carbon ef-
ficiency requires societal systems to be fundamentally 
rethought to exploit temporal and spatial variations by 
doing more work when and where low-carbon energy 
is available.

Despite its increasing importance, optimizing car-
bon efficiency has seen much less research attention, 
and many fewer advances, than optimizing energy ef-
ficiency for both social and technical reasons. Socially, 
since energy incurs a monetary cost, there has always 
been a strong economic incentive to reduce cost by in-
creasing energy efficiency. By contrast, in the absence 
of a carbon tax, there is no direct economic incentive 
to optimize carbon efficiency. However, government 
subsidies,2 proposed mandatory reporting,7 and con-
tinuing declines in renewable energy costs, primari-
ly for solar and wind, are starting to introduce some 

indirect incentives. Technically, there are multiple 
barriers to optimizing carbon efficiency including the 
following: 

1)	 a lack of visibility into the carbon emissions of 
the energy we use, i.e., “operational” emissions, 
and the products we consume, i.e., “embodied” 
emissions 

2)	 a lack of flexibility in responding to, and optimiz-
ing for, changes in operational and embodied 
carbon emissions, e.g., by adapting how we use 
energy and the products we buy

3)	 a lack of programmability in exposing soft-
ware-defined interfaces to automatically moni-
tor and control systems to optimize carbon effi-
ciency by leveraging energy flexibility. 

The absence of social incentives combined with 
this lack of visibility, flexibility, and programmability 
has largely prevented sophisticated carbon-efficiency 
optimizations.

The field of Computational Decarbonization (or 
CoDec) focuses on overcoming these barriers by 
optimizing carbon efficiency to reduce the lifecycle 
carbon emissions—the sum of operational and em-
bodied carbon amortized—of computing and societal 
infrastructure using computational and data-driven 
techniques. Since CoDec research targets the foun-
dations of society’s infrastructure—for computing, 
electricity, the built environment, and transporta-
tion—which all represent different forms of inter-con-
nected cyberphysical systems, we view it as a special 
type of sense–optimize–reduce problem that oper-
ates both within and across these domains, as well 
as over multiple temporal and geographical scales. 
We envision new research addressing the aforemen-
tioned technical challenges by developing novel 1) 
sensing approaches to provide visibility into systems’ 
operational and embodied carbon over their lifetime, 
2) optimization methods grounded in theory and ar-
tificial intelligence (AI) to exploit new dimensions of 
energy flexibility, which are emerging in modern infra-
structure, for optimizing carbon efficiency, and 3) soft-
ware-defined interfaces and systems for programmat-
ically deploying these optimizations to reduce carbon 
emissions.

OVERVIEW
There are multiple trends that motivate a new focus on 
computational decarbonization across society.

	❯ Carbon–energy–performance (CEP) gap: Op-
timizing for carbon efficiency introduces 

FIGURE 1.  Grid carbon emissions vary 6–43# temporally and 

spatially.
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fundamental tradeoffs with multiple metrics, 
including performance, energy efficiency, cost, 
fairness, and many others. In particular, we hy-
pothesize that it may be impossible to simultane-
ously optimize carbon efficiency, energy efficien-
cy, and performance in societal infrastructure 
domains. Thus, better understanding and quan-
tifying these complex tradeoffs across domains 
is critically important in developing carbon-effi-
ciency optimizations, which must navigate them 
in reducing carbon emissions.

	❯ Inter-dependency gap: While independent ef-
forts have begun to decarbonize different sec-
tors, such as cloud computing, the built environ-
ment, and transportation, they ignore complex 
interdependencies that exist between sectors, 
as well as across time and space. These sectors 
are connected both physically—via the electric 
grid—and economically—through supply chains. 
As one simple example of this interdependency, 
while shifting to remote work reduces transpor-
tation emissions, it likely increases residential 
building emissions. Siloed approaches that ig-
nore such couplings are likely to achieve limit-
ed success. In contrast, new research needs to 
rigorously address, and exploit, such interdepen-
dencies through cross-system and cross-domain 
approaches, mediated by computation.

	❯ Scale gap: The scale at which society must ad-
dress decarbonization problems is fundamental-
ly different than conventional energy-efficiency 
problems. Specifically, traditional energy optimi-
zations have broadly focused on relatively small 
spatiotemporal scales. As shown in Figure  2, 
efforts within computing, for instance, have 
focused on subsecond optimizations within 
servers, e.g., chip- and OS-level power manage-
ment,16,19 to hours-level methods within data-
centers, e.g., optimizations based on diurnal 
workloads.10 In contrast, many decarbonization 
problems manifest at much longer temporal 
scales, ranging from minutes to months or years, 
and much larger spatial scales, ranging from indi-
vidual systems or communities to entire regions. 
Decarbonization problems at these intermedi-
ate “mesoscales”a  abound, and include optimiz-
ing the annual emissions of a hyperscale cloud 
datacenter, increasing equipment lifetimes to 

aInspired by mesoscale meteorology, representing weather 
phenomena over a few kilometers to 2000 km. Meso means 
intermediate scale.

reduce embodied emissions, and decarbonizing 
a regional electric vehicle charging network. Ad-
dressing these intermediate challenges is critical 
to bridging the “scale gap” that exists between 
low-level energy optimizations and global-scale 
decarbonization goals.11

Importantly, computational decarbonization re-
search needs to address problems at mesoscales 
through a novel class of computational techniques, 
algorithms, systems, and AI methods designed to 
sense, optimize, and reduce the lifecycle (i.e., oper-
ational and embodied) GHG emissions of societal 
infrastructure over the intermediate time scales of 
minutes-to-years and spatial scales of communi-
ties-to-countries. This research will also need to 
recognize the unique role computing will play in de-
carbonizing society both as a “means” to automate 
and coordinate carbon-efficiency optimizations 
across time, space, and sectors, and as a “medium” 
that consumes increasingly significant amounts of 
energy but also has substantial temporal, spatial, 
and performance flexibility.

The potential benefits of CoDec research can be 
quite significant. EPA studies show that society’s infra-
structure generates 89% of its GHG emissions1—with 
25% from electricity grids, 27% from transportation, 
13% from buildings and 24% from industry. By acceler-
ating the decarbonization of these sectors through its 
unique multidomain approach, CoDec can help bend 
the emissions curve downwards. For a single sector, 

FIGURE 2.  Computational decarbonization fills the gap be-

tween global-scale, decades-long policies, and domain-spe-

cific, short-term decisions.
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such as computing, this can eliminate 730 megatons 
of annual GHG emissions in perpetuity, with each 1% 
additional emission reductions across domains yield-
ing 30 billion tons of savings.1

CODEC VISION
We envision a future decarbonized world that will 
generate energy from a mix of mostly low-carbon, but 
volatile, energy sources. This transition is poised to 
alter the foundation of modern society by transform-
ing energy from a resource that is largely centralized, 
costly, and dirty, but highly stable, to one that is largely 
distributed, cheap, and clean, but highly intermittent 
and variable. Thus, in this future world, clean ener-
gy will be plentiful at times, but precious at others, 
making coordination and orchestration of energy’s 
supply and demand critical for maintaining quality of 
life, sustaining the global economy, and ensuring en-
ergy availability during times of scarcity. Importantly, 
all of society will need to make a fundamental shift to 
adapt to this future by exploiting multiple dimensions 
of energy-flexibility—the degree to which a system 
can modulate its energy usage across time, space, 
and uses—to consume low-carbon energy when and 
where it is available.

The future world we envision will also need to em-
ploy human-centered approaches where individuals, 
and the organizations to which they belong, have the 
ability to make decisions (“green choices”) about when 
and how they consume carbon as part of their normal 
activities, such that societal systems respect and im-
plement these decisions in fair, accountable, transpar-
ent, and equitable manner.

Some early efforts have already begun to ad-
dress various facets of decarbonization, which we 
briefly discuss through the lens of visibility, flexibil-
ity, and programmability. Electrical energy’s carbon 
intensity—the emissions per unit of electrical energy 
generated (in g · CO2/kWh)—depends on the mix of 
generation sources that supply energy to each re-
gional grid. Since many grid operators now publish 
data on their generation sources in real time, it is now 
possible to estimate the grid energy’s carbon inten-
sity. For example, third-party services, such as Watt-
Time and ElectricityMap, provide real-time estimates 
of grid energy’s carbon-intensity via cloud applica-
tion programming interfaces. As depicted in Figure 
1, grid energy’s carbon intensity can vary by 6 # over 
a day (in California) and by 43 # across regions (be-
tween Ontario and Mumbai). Cloud providers, includ-
ing Google Cloud Platform (GCP) and Azure have, in 
turn, begun to use such data to estimate and expose 

their cloud resources’ carbon intensity to end users.9 
However, the current data’s temporal and spatial res-
olution remains coarse and backward-looking (e.g., 
average carbon intensity for large regions over the 
prior month), and is thus insufficient for larger for-
ward-looking mesoscale approaches. In addition to 
directly optimizing for changes in grid energy’s car-
bon efficiency, many companies also purchase car-
bon offsets to reduce their net carbon footprint on an 
annualized basis.14 Unfortunately, carbon offsets are 
only effective as a transitional mechanism since we 
must ultimately reduce absolute global carbon emis-
sions to near zero, where there is little carbon left 
to offset. To reach zero carbon, we must eventually 
move beyond carbon offsets and focus on changing 
operations to always run on low-carbon energy, e.g., 
from solar, wind, hydro, nuclear, geothermal, and so 
on. Many types of carbon offsets may actually delay 
these operational changes by providing a means for 
reducing carbon emissions for less than it would cost 
to make such changes.5

Reducing lifecycle carbon emissions by improving 
carbon efficiency requires systems to fundamentally 
alter their short- and long-term operation by exploit-
ing flexibility. For example, since cloud workloads have 
considerable temporal and spatial flexibility, recent 
approaches have quantified emissions reductions 
from shifting work across time and cloud regions.17,18 In 
addition, the grid has long operated demand response 
programs13 that turn off flexible loads, often manual-
ly, to reduce infrequent seasonal peak usage, which 
disproportionately impacts cost and carbon emis-
sions. Apple’s iOS also recently incorporated a green 
charging option for all iPhones that shifts charging 
times based on changes in the grid’s carbon intensity.4 
However, these efforts, while promising, are isolated, 
uncoordinated, and fail to consider and exploit interde-
pendencies and couplings within and across domains. 
Further, these efforts largely focus on optimizing oper-
ational, and not embodied, emissions, which are also 
important. In contrast, CoDec research should focus 
on optimizing lifecycle carbon, i.e., a system’s emis-
sions amortized over its entire lifetime, which includes 
both embodied carbon from systems’ manufacturing, 
transportation, installation, and decommissioning, 
and operational carbon resulting from their day-to-
day operation. While prior efforts have addressed 
these two components through largely independent 
approaches,17,20 optimizing both introduces dependen-
cies (or couplings) that necessitate a joint approach. 
For example, while increasing a server or car’s lifetime 
amortizes its embodied carbon over a longer duration, 
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it also increases its operational carbon—as aging 
equipment may be less efficient than newer models.

Further, systems in different domains have varied 
lifetimes and vastly different ratios of operational and 
embodied carbon. For example, smartphones tend to 
have short 3–4 year lifetimes with embodied carbon 
representing 80% of their lifecycle costs, while build-
ings have lifetimes of 50 years or more with operation-
al carbon constituting 80% of lifecycle carbon (see 
Figure 3). While some industry efforts for optimizing 
embodied carbon seek to recycle products to reduce 
e-waste or resell them to extend lifetimes,6 little work 
has considered jointly optimizing operational and em-
bodied carbon holistically, while also being cognizant 
of domain-specific differences. Finally, with the emer-
gence of industrial Internet of Things technologies, 
systems, such as buildings, vehicles, and factories 
increasingly expose programmatic control, providing 
the basic building blocks for lifecycle carbon manage-
ment. However, these programmatic interfaces only 
allow control of individual systems, but do not enable 
managing and orchestrating larger collections of sys-
tems for decarbonization at scale.

CEP Impossibility Conjecture
Optimizing lifecycle carbon for societal infrastructure 
cannot be done in a vacuum without considering these 
systems’ other objectives—such as their energy efficien-
cy, cost efficiency, and performance (for users). Com-
plex systems that must satisfy multiple independent 
goals are generally forced to make nontrivial tradeoffs, 
as the goals often conflict. As one example, in large dis-
tributed systems, the consistency-availability-partition 
Tolerance (CAP) theorem states that distributed sys-
tems can only achieve two of the three desirable goals 
of consistency, availability, and network partition toler-
ance at any time.8 The CAP theorem, originally posed as 
a conjecture but later proven,8 is a seminal result that 
now underpins the design of nearly every large distrib-
uted system.

Societal infrastructure is subject to similar con-
flicts between the goals of carbon efficiency, energy 
efficiency, and performance. Specifically, in scenari-
os where energy is not entirely carbon free and en-
ergy’s carbon intensity varies over time and space, it 
is not possible for systems to simultaneously maxi-
mize carbon efficiency, energy efficiency, and per-
formance. Analogous to the CAP theorem, we pos-
tulate this fundamental tradeoff as an impossibility 
result called the CEP conjecture. As shown in Figure 
4, the CEP conjecture is a fundamental principle that 
states that systems across a broad range of domains 
can achieve at most two out of the three properties 

of carbon efficiency, energy efficiency, and perfor-
mance. Note that energy efficiency implicitly cor-
relates with cost efficiency since using energy incurs 
a monetary cost.

Although a conjecture, preliminary work reveals 
examples in domains from computing to transporta-
tion where this property arises. For example, an intelli-
gent electric vehicle (EV) charging network might slow 
charging when grid carbon intensity is high, reducing 
emissions and increasing energy efficiency, but doing 
so increases charging time, reducing user-perceived 
performance. Likewise, prior work on zero-carbon 
clouds trades operational carbon for increased em-
bodied emissions.20 The CEP conjecture has profound 
implications on decarbonization optimizations since 
it suggests tradeoffs across conflicting goals are re-
quired: understanding how to navigate these tradeoffs 
can serve as a unifying theme across a broad range of 
CoDec research.

FIGURE 3.  Lifetimes and embodied carbon across domains.

FIGURE 4.  The CEP impossibility conjecture: “Pick any two of 

carbon efficiency, energy efficiency, and performance.”
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Multiscale Temporal and Spatial 
Dependence
Computational decarbonization, when viewed as a 
sense–optimize–reduce control problem, exhibits 
multiscale temporal and spatial dependence. Specifi-
cally, we can decompose the decarbonization of any 
system into a set of subproblems, each with its own 
sense–optimize–reduce loop (see Figure 5). Within 
a system, these decarbonization loops arise hierar-
chically at multiple temporal and spatial scales. For 
example, a hyperscale cloud datacenter may operate 
a carbon-aware cloud scheduler that optimizes emis-
sions at the scale of minutes to hours, a resource man-
ager that optimizes annual emissions, and a lifetime 
manager that manages emissions over several years. 

Similarly, a city-wide EV charging network or a distrib-
uted Content Distribution Network (CDN) may coordi-
nate across different spatial locations to optimize their 
network emissions. These concurrent spatiotemporal 
control loops are linked through their contribution to 
lifecycle carbon and hence must also coordinate with 
one another—a form of joint optimization—to achieve 
a common decarbonization goal. Such multiscale de-
pendent spatiotemporal sense–optimize–reduce de-
carbonization loops are a distinguishing characteristic 
of CoDec problems.

Further, since decarbonization decisions in one do-
main can affect emissions in another, these sense–opti-
mize–reduce loops also have interdependencies across 
domains. For instance, decarbonizing transportation 
by shifting to clean electric cars and trucks increas-
es grid demand and potentially emissions from “dirty” 
peaker plants. Moreover, Jevons’ Paradox3 can intro-
duce rebound effects where increasing the availability 
of cheap low-carbon energy may encourage society to 
consume more of it, causing demand to outstrip supply. 
To address these problems, future research in CoDec 
will need to address and exploit cross-domain interde-
pendencies through new decarbonization approaches 
that are coupled with and mediated by computation.

Figure 6 provides a layered view of the different 
areas of research in our ongoing research project in 
computational decarbonization. The lowest layer fo-
cuses on both 1) foundational algorithms and policies 
for optimizing CEP tradeoffs grounded in theory and 
AI and 2) foundational systems mechanisms capable 
of securely implementing these policies. Foundational 
theory and AI approaches for optimizing carbon effi-
ciency at mesoscales include learning-driven online 
optimization, optimization-in-the-loop learning, and 
multiagent learning that also considers economic in-
centives. Foundational systems mechanisms include 
general software platforms and carbon services for 
improving distributed infrastructure systems’ visi-
bility, flexibility, and programmability to monitor and 
respond to changes in both their operational and em-
bodied carbon emissions. The next layer then focuses 
on enabling the previous automated policies for mul-
tiple domains of societal infrastructure to optimize 
lifecycle carbon emissions. This includes computing 
infrastructure, e.g., AI applications, large-scale cloud 
platforms, edge networks, and client devices, as well 
as other large-scale infrastructure, including the built 
environment, electric transportation networks, and 
human-in-the-loop systems. Finally, the highest layer 
focuses on cross-domain optimizations that coordi-
nate between different sectors, including computing, 
buildings, transportation, the grid, and so on.

FIGURE 5.  Sense-optimize-reduce loops at multitime-scales.

FIGURE 6.  Research directions for our CoDec project.
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CONCLUSION
This article lays out a vision for a new research area, 
called computational decarbonization, that focuses 
on applying computational techniques to jointly de-
carbonize, not just computing, but multiple sectors of 
society, e.g., computing, buildings, transportation, the 
electric grid, supply chains, and so on. Computation-
al decarbonization differs from prior efforts in multiple 
ways, particularly its focus on jointly optimizing lifecy-
cle carbon emissions across multiple sectors and time 
scales.

ACKNOWLEDGMENTS
This work was supported by a National Science Foun-
dation (NSF) Expeditions award CNS-2325956.

REFERENCES
	 1.	 “Sources of greenhouse gas emissions,” US 

Environmental Protection Agency, Washington, DC, 
USA, 2021. [Online]. Available: https://www.epa.gov/
ghgemissions/sources-greenhouse-gas-emissions

	 2.	 “How the inflation reduction act will drive global 
climate action,” Center for American Progress, 
Washington, DC, USA, Aug. 2022. [Online]. Available: 
https://www.americanprogress.org/article/how-the 
-inflation-reduction-act-will-drive-global-climate-action

	 3.	 B. Alcott, “Jevons’ paradox,” Ecol. Econ., vol. 54, no. 1, 
pp. 9–21, 2005.

	 4.	 “Use clean energy charging on your iPhone.” Apple 
Support. Accessed: Mar. 2025. [Online]. Available: 
https://support.apple.com/en-us/HT213323 

	 5.	 N. Bashir et al., “Enabling sustainable clouds: The case 
for virtualizing the energy system,” in Proc. ACM Symp. 
Cloud Comput. (SoCC), New York, NY, USA: ACM, Oct. 
2021, pp. 350–358.

	 6.	 V. Forti, C. P. Balde, R. Kuehr, and G. Bel, “The global 
E-waste monitor 2020: Quantities, flows and the 
circular economy potential,” United Nations,  
New York, NY, USA, 2020. Accessed: Mar. 2025. 
[Online]. Available: https://ewastemonitor.info/ 
wp-content/uploads/2020/11/GEM_2020_def_july1_
low.pdf 

	 7.	 G. Gensler, “Statement on proposed mandatory 
climate risk disclosures,” US Government Securities 
Exchange Commissions, Washington, DC, USA, Mar. 
2022. [Online]. Available: https://www.sec.gov/news/
statement/gensler-climate-disclosure-20220321

	 8.	 S. Gilbert and N. Lynch, “Brewer’s conjecture and the 
feasibility of consistent, available, partition-tolerant 
web services,” ACM SIGACT News, vol. 33, no. 2, pp. 
51–59, 2002, doi: 10.1145/564585.564601.

	 9.	 “Carbon footprint.” Google Cloud. Accessed: Mar. 
2025. [Online]. Available: https://cloud.google.com/
carbon-footprint 

	 10.	 S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, 
“Benefits and limitations of tapping into stored 
energy for datacenters,” in Proc. 38th Annu. Int. Symp. 
Comput. Architect. (ISCA), New York, NY, USA: ACM, 
Jun. 2011, pp. 341–352.

	 11.	 IPCC, “Climate change 2022: Impacts, adaptation 
and vulnerability – Summary for Policymakers,” 
Cambridge Univ. Press, Cambridge, UK, 2022. 
[Online]. Available: https://www.ipcc.ch/report/
ar6/wg2/downloads/report/IPCC_AR6_WGII_
SummaryForPolicymakers.pdf

	 12.	 R. Landauer, “Irreversibility and heat generation in the 
computing process,” IBM J. Res. Dev., vol. 5, no. 3, pp. 
183–191, Jul. 1961, doi: 10.1147/rd.53.0183.

	 13.	 J. Medina, N. Muller, and I. Roytelman, “Demand 
response and distribution grid operations: 
Opportunities and challenges,” IEEE Trans. Smart 
Grid, vol. 1, no. 2, pp. 193–198, Sep. 2010, doi: 10.1109/
TSG.2010.2050156.

	 14.	 “Climate.” Meta. Accessed: Mar. 2025. [Online]. 
Available: https://sustainability.fb.com/climate/ 

	 15.	 S. Pichai, “Our third decade of climate action: Realizing 
a carbon-free future,” Google Blog, Sep. 14, 2020. 
[Online]. Available: https://blog.google/outreach-
initiatives/sustainability/our-third-decade-climate-
action-realizing-carbon-free-future

	 16.	 K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. 
Chen, “Power containers: An OS facility for fine-grained 
power and energy management on multicore servers,” 
ACM SIGPLAN Notices, vol. 48, no. 4, pp. 65–76.

	 17.	 A. Souza et al., “Ecovisor: A virtual energy system for 
carbon-efficient applications,” in Proc. 28th ACM Int. 
Conf. Archit. Support Program. Lang. Operating Syst. 
(ASPLOS), New York, NY, USA: ACM, Mar. 2023, pp. 
252–265.

	 18.	 E. Strubell, A. Ganesh, and A. McCallum, “Energy and 
policy considerations for deep learning in NLP,” in 
Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 
Association for Computational Linguistics, Jul. 2019, 
pp. 3645–3650.

	 19.	 M. Weiser, B. Welch, A. Demers, and S. Shenker, 
“Scheduling for reduced CPU energy,” in Proc. 1st 
USENIX Conf. Operating Syst. Des. Implementation 
(OSDI), USENIX Association, Berkeley, CA, USA, Nov. 
1994, pp. 13–23. 

	 20.	 F. Yang and A. A. Chien, “Large-scale and extreme-
scale computing with stranded green power: 
Opportunities and costs,” IEEE Trans. Parallel Distrib. 
Syst., vol. 29, no. 5, pp. 1103–1116, May 2018, doi: 10.1109/
TPDS.2017.2782677.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 03,2025 at 15:37:50 UTC from IEEE Xplore.  Restrictions apply. 

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.americanprogress.org/article/how-the-inflation-reduction-act-will-drive-global-climate-action
https://www.americanprogress.org/article/how-the-inflation-reduction-act-will-drive-global-climate-action
https://support.apple.com/en-us/HT213323
https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf
https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf
https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf
https://www.sec.gov/news/statement/gensler-climate-disclosure-20220321
https://www.sec.gov/news/statement/gensler-climate-disclosure-20220321
http://dx.doi.org/10.1145/564585.564601
https://cloud.google.com/carbon-footprint
https://cloud.google.com/carbon-footprint
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1109/TSG.2010.2050156
http://dx.doi.org/10.1109/TSG.2010.2050156
https://sustainability.fb.com/climate/
https://blog.google/outreach-initiatives/sustainability/our-third-decade-climate-action-realizing-carbon-free-future
https://blog.google/outreach-initiatives/sustainability/our-third-decade-climate-action-realizing-carbon-free-future
https://blog.google/outreach-initiatives/sustainability/our-third-decade-climate-action-realizing-carbon-free-future
http://dx.doi.org/10.1109/TPDS.2017.2782677
http://dx.doi.org/10.1109/TPDS.2017.2782677


34 IEEE Internet Computing March/April 2025

COMPUTING FOR SUSTAINABILITY

DAVID IRWIN is a professor of electrical and computer 

engineering at the University of Massachusetts Amherst, 

Amherst, MA, 01267, USA. His research interests include 

computer systems, energy-efficiency, and sustainability. Irwin 

has a Ph.D. in computer science from Duke University. Contact 

him at deirwin@umass.edu.

PRASHANT SHENOY is a distinguished professor of computer 

science at the University of Massachusetts Amherst, Amherst, 

MA, 01267, USA. His research interests include distributed 

systems, networking, and cloud computing. Shenoy earned his 

Ph.D. from Computer Science, University of Texas at Austin. 

Contact him at shenoy@cs.umass.edu.

MOHAMMAD HAJIESMAILI is an associate professor 

of computer science at the University of Massachusetts 

Amherst, Amherst, MA, 01267, USA. His research interests 

include optimization, machine learning, and algorithms. 

Hajiesmaili earned his Ph.D. degree in computer engineering 

from the University of Tehran. Contact him at mhajiesmaili@

umass.edu.

WALID A. HANAFY is a postdoctoral research associate in 

computer science at the University of Massachusetts Amherst, 

Amherst, MA, 01267, USA. His research interests include 

distributed systems, cloud computing, and carbon-efficiency. 

Hanafy earned his Ph.D. degree in computer science from 

the University of Massachusetts Amherst. Contact him at 

whanafy@cs.umass.edu.

JIMI OKE is an assistant professor of civil and environmental 

engineering at the University of Massachusetts Amherst, 

Amherst, MA, 01267, USA. His research interests include 

transportation engineering, network science, and machine 

learning. Oke earned his Ph.D. degree in civil engineering from 

Johns Hopkins University. Contact him at jboke@umass.edu.

RAMESH SITARAMAN is a distinguished professor of 

computer science at the University of Massachusetts 

Amherst, Amherst, MA, 01267, USA. His research interests 

include content delivery networks, edge computing, and 

networking. Sitaraman earned his Ph.D. degree in computer 

science from Princeton University. Contact him at ramesh@

cs.umass.edu.

YUVRAJ AGARWAL is an associate professor in the school of 

computer science at Carnegie Mellon University, Pittsburgh, PA, 

15213, USA. His research interests include computer systems, 

networking, and embedded systems. Agarwal earned his Ph.D. 

degree in computer science from the University of California 

San Diego. Contact him at yuvraj@cs.cmu.edu.

GEOFFREY J. GORDON is a professor in the school of 

computer science at Carnegie Mellon University, Pittsburgh, 

PA, 15213, USA. His research interests include robust, safe, and 

secure machine learning. Gordon earned his Ph.D. degree in 

computer science from Carnegie Mellon University. Contact 

him at ggordon@cs.cmu.edu.

ZICO KOLTER is a professor in the school of computer science 

at Carnegie Mellon University, Pittsburgh, PA, 15213, USA. His 

research interests include multiagent planning, reinforcement 

learning, and decision-theoretic planning. Kolter earned his 

Ph.D. degree in computer science from Stanford University. 

Contact him at zkolter@cs.cmu.edu.

DEEPAK RAJAGOPAL is an associate professor in the Institute 

of the Environment and Sustainability at the University of 

California Los Angeles, Los Angeles, CA, 90095, USA. His 

research interests include life cycle assessment, industrial 

ecology, and energy/agricultural economics and policy; 

Rajagopal earned his Ph.D. degree in energy and resources from 

the University of California Berkeley. Contact him at rdeepak@

ioes.ucla.edu.

MANI SRIVASTAVA is a professor of electrical and computer 

engineering at the University of California Los Angeles, Los 

Angeles, CA, 90095, USA. His interests include embedded 

systems, wireless networks, and cyberphysical systems. 

Srivastava earned his Ph.D. degree in electrical engineering and 

computer science from the University of California Berkeley. 

Contact him at mbs@ucla.edu.

VIVIENNE SZE is a professor of electrical engineering and 

computer science at the Massachusetts Institute of Technology, 

Cambridge, MA, 02139, USA. Her research interests include 

VLSI, low-power design, and machine learning. Sze earned her 

Ph.D. degree in electrical engineering from the Massachusetts 

Institute of Technology. Contact her at sze@mit.edu.

PRIYA DONTI is an assistant professor and the Silverman (1968) 

Family Career Development Professor of Electrical Engineering 

and Computer science at the Massachusetts Institute of 

Technology, Cambridge, MA, 02139, USA. Her research interests 

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 03,2025 at 15:37:50 UTC from IEEE Xplore.  Restrictions apply. 

mailto:deirwin@umass.edu
mailto:shenoy@cs.umass.edu
mailto:mhajiesmaili@umass.edu
mailto:mhajiesmaili@umass.edu
mailto:whanafy@cs.umass.edu
mailto:jboke@umass.edu
mailto:ramesh@cs.umass.edu
mailto:ramesh@cs.umass.edu
mailto:yuvraj@cs.cmu.edu
mailto:ggordon@cs.cmu.edu
mailto:zkolter@cs.cmu.edu
mailto:rdeepak@ioes.ucla.edu
mailto:rdeepak@ioes.ucla.edu
mailto:mbs@ucla.edu
mailto:sze@mit.edu


IEEE Internet ComputingMarch/April 2025 35

COMPUTING FOR SUSTAINABILITY

include machine learning for forecasting, optimization, and 

control in high-renewable grids. Donti earned her Ph.D. degree 

in computer science and public policy from Carnegie Mellon 

University. Contact her at donti@mit.edu.

ANDREW CHIEN is the William Eckhardt Distinguished Service 

Professor of Computer Science at the University of Chicago, 

Chicago, IL, 60637, USA. His research interests include cloud 

software, sustainable computing, and computer architecture. 

Chien earned his Sc.D. degree in computer science from 

the Massachusetts Institute of Technology. Contact him at 

aachien@uchicago.edu.

JOHN BIRGE is the Hobart W. Williams Distinguished Service 

Professor of Operations Management at the University of 

Chicago, Chicago, IL, 60637, USA. His research interests 

include operations management and mathematical modeling 

of systems under uncertainty. Birge earned his Ph.D. degree in 

operations research from Stanford University. Contact him at 

john.birge@chicagobooth.edu.

ALI HORTACSU is the William M. Ogden Distinguished Service 

Professor of Economics at the University of Chicago, Chicago, 

IL, 60637, USA. His research interests include economics 

and market efficiency. Hortacsu earned his Ph.D. degree in 

economics from Stanford University. Contact him at hortacsu@

uchicago.edu.

LINE ROALD is an associate professor of electrical and 

computer engineering at the University of Wisconsin–Madison, 

Madison, WI, 53706, USA. Her research interests include energy 

systems, renewable energy, and optimization. Roald earned her 

Ph.D. degree in electrical engineering from ETH Zurich. Contact 

her at roald@wisc.edu.

Publish your work in the IEEE Computer 
Society’s flagship journal, IEEE Transactions 
on Computers. The journal seeks papers on 
everything from computer architecture and 
software systems to machine learning and 
quantum computing.

Learn about calls for papers 
and submission details at  
www.computer.org/tc

Call for Papers

tc-generic-cfp-half-Sept2024.indd   1tc-generic-cfp-half-Sept2024.indd   1 9/30/24   6:38 PM9/30/24   6:38 PM

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on September 03,2025 at 15:37:50 UTC from IEEE Xplore.  Restrictions apply. 

mailto:donti@mit.edu
mailto:aachien@uchicago.edu
mailto:john.birge@chicagobooth.edu
mailto:hortacsu@uchicago.edu
mailto:hortacsu@uchicago.edu
mailto:roald@wisc.edu

	27_29mic02-Irwin-3575016-IE-JMIC250035

